On compact one-idempotent semi-groups
نویسندگان
چکیده
منابع مشابه
Idempotent Measures on Compact Semigroups
Throughout this paper, 5 will be a compact Hausdorff topological semigroup, 5 will denote the convolution semigroup of normalized non-negative regular Borel measures on 5, and H will be the carrier of a measure p in 5. The space of continuous complex valued functions on 5 will be denoted by C(S), while Cr(S) will be the subspace of C(S) of real valued functions. Standard terminology and definit...
متن کاملA New Characterisation of Idempotent States on Finite and Compact Quantum Groups
We show that idempotent states on finite quantum groups correspond to pre-subgroups in the sense of Baaj, Blanchard, and Skandalis. It follows that the lattices formed by the idempotent states on a finite quantum group and by its coidalgebras are isomorphic. We show furthermore that these lattices are also isomorphic for compact quantum groups, if one restricts to expected coidalgebras.
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1954
ISSN: 0386-5991
DOI: 10.2996/kmj/1138843434